1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use crate::io::{AsyncRead, AsyncWrite, ReadBuf};

use std::future::Future;
use std::io;
use std::pin::Pin;
use std::task::{Context, Poll};

#[derive(Debug)]
pub(super) struct CopyBuffer {
    read_done: bool,
    need_flush: bool,
    pos: usize,
    cap: usize,
    amt: u64,
    buf: Box<[u8]>,
}

impl CopyBuffer {
    pub(super) fn new() -> Self {
        Self {
            read_done: false,
            need_flush: false,
            pos: 0,
            cap: 0,
            amt: 0,
            buf: vec![0; super::DEFAULT_BUF_SIZE].into_boxed_slice(),
        }
    }

    fn poll_fill_buf<R>(
        &mut self,
        cx: &mut Context<'_>,
        reader: Pin<&mut R>,
    ) -> Poll<io::Result<()>>
    where
        R: AsyncRead + ?Sized,
    {
        let me = &mut *self;
        let mut buf = ReadBuf::new(&mut me.buf);
        buf.set_filled(me.cap);

        let res = reader.poll_read(cx, &mut buf);
        if let Poll::Ready(Ok(_)) = res {
            let filled_len = buf.filled().len();
            me.read_done = me.cap == filled_len;
            me.cap = filled_len;
        }
        res
    }

    fn poll_write_buf<R, W>(
        &mut self,
        cx: &mut Context<'_>,
        mut reader: Pin<&mut R>,
        mut writer: Pin<&mut W>,
    ) -> Poll<io::Result<usize>>
    where
        R: AsyncRead + ?Sized,
        W: AsyncWrite + ?Sized,
    {
        let me = &mut *self;
        match writer.as_mut().poll_write(cx, &me.buf[me.pos..me.cap]) {
            Poll::Pending => {
                // Top up the buffer towards full if we can read a bit more
                // data - this should improve the chances of a large write
                if !me.read_done && me.cap < me.buf.len() {
                    ready!(me.poll_fill_buf(cx, reader.as_mut()))?;
                }
                Poll::Pending
            }
            res => res,
        }
    }

    pub(super) fn poll_copy<R, W>(
        &mut self,
        cx: &mut Context<'_>,
        mut reader: Pin<&mut R>,
        mut writer: Pin<&mut W>,
    ) -> Poll<io::Result<u64>>
    where
        R: AsyncRead + ?Sized,
        W: AsyncWrite + ?Sized,
    {
        loop {
            // If our buffer is empty, then we need to read some data to
            // continue.
            if self.pos == self.cap && !self.read_done {
                self.pos = 0;
                self.cap = 0;

                match self.poll_fill_buf(cx, reader.as_mut()) {
                    Poll::Ready(Ok(_)) => (),
                    Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
                    Poll::Pending => {
                        // Try flushing when the reader has no progress to avoid deadlock
                        // when the reader depends on buffered writer.
                        if self.need_flush {
                            ready!(writer.as_mut().poll_flush(cx))?;
                            self.need_flush = false;
                        }

                        return Poll::Pending;
                    }
                }
            }

            // If our buffer has some data, let's write it out!
            while self.pos < self.cap {
                let i = ready!(self.poll_write_buf(cx, reader.as_mut(), writer.as_mut()))?;
                if i == 0 {
                    return Poll::Ready(Err(io::Error::new(
                        io::ErrorKind::WriteZero,
                        "write zero byte into writer",
                    )));
                } else {
                    self.pos += i;
                    self.amt += i as u64;
                    self.need_flush = true;
                }
            }

            // If pos larger than cap, this loop will never stop.
            // In particular, user's wrong poll_write implementation returning
            // incorrect written length may lead to thread blocking.
            debug_assert!(
                self.pos <= self.cap,
                "writer returned length larger than input slice"
            );

            // If we've written all the data and we've seen EOF, flush out the
            // data and finish the transfer.
            if self.pos == self.cap && self.read_done {
                ready!(writer.as_mut().poll_flush(cx))?;
                return Poll::Ready(Ok(self.amt));
            }
        }
    }
}

/// A future that asynchronously copies the entire contents of a reader into a
/// writer.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct Copy<'a, R: ?Sized, W: ?Sized> {
    reader: &'a mut R,
    writer: &'a mut W,
    buf: CopyBuffer,
}

cfg_io_util! {
    /// Asynchronously copies the entire contents of a reader into a writer.
    ///
    /// This function returns a future that will continuously read data from
    /// `reader` and then write it into `writer` in a streaming fashion until
    /// `reader` returns EOF or fails.
    ///
    /// On success, the total number of bytes that were copied from `reader` to
    /// `writer` is returned.
    ///
    /// This is an asynchronous version of [`std::io::copy`][std].
    ///
    /// A heap-allocated copy buffer with 8 KB is created to take data from the
    /// reader to the writer, check [`copy_buf`] if you want an alternative for
    /// [`AsyncBufRead`]. You can use `copy_buf` with [`BufReader`] to change the
    /// buffer capacity.
    ///
    /// [std]: std::io::copy
    /// [`copy_buf`]: crate::io::copy_buf
    /// [`AsyncBufRead`]: crate::io::AsyncBufRead
    /// [`BufReader`]: crate::io::BufReader
    ///
    /// # Errors
    ///
    /// The returned future will return an error immediately if any call to
    /// `poll_read` or `poll_write` returns an error.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::io;
    ///
    /// # async fn dox() -> std::io::Result<()> {
    /// let mut reader: &[u8] = b"hello";
    /// let mut writer: Vec<u8> = vec![];
    ///
    /// io::copy(&mut reader, &mut writer).await?;
    ///
    /// assert_eq!(&b"hello"[..], &writer[..]);
    /// # Ok(())
    /// # }
    /// ```
    pub async fn copy<'a, R, W>(reader: &'a mut R, writer: &'a mut W) -> io::Result<u64>
    where
        R: AsyncRead + Unpin + ?Sized,
        W: AsyncWrite + Unpin + ?Sized,
    {
        Copy {
            reader,
            writer,
            buf: CopyBuffer::new()
        }.await
    }
}

impl<R, W> Future for Copy<'_, R, W>
where
    R: AsyncRead + Unpin + ?Sized,
    W: AsyncWrite + Unpin + ?Sized,
{
    type Output = io::Result<u64>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
        let me = &mut *self;

        me.buf
            .poll_copy(cx, Pin::new(&mut *me.reader), Pin::new(&mut *me.writer))
    }
}