1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
//-
// Copyright 2017, 2018 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Strategies to generate numeric values (as opposed to integers used as bit
//! fields).
//!
//! All strategies in this module shrink by binary searching towards 0.

use crate::test_runner::TestRunner;
use core::ops::Range;
use rand::distributions::uniform::{SampleUniform, Uniform};
use rand::distributions::{Distribution, Standard};

pub(crate) fn sample_uniform<X: SampleUniform>(
    run: &mut TestRunner,
    range: Range<X>,
) -> X {
    Uniform::new(range.start, range.end).sample(run.rng())
}

pub(crate) fn sample_uniform_incl<X: SampleUniform>(
    run: &mut TestRunner,
    start: X,
    end: X,
) -> X {
    Uniform::new_inclusive(start, end).sample(run.rng())
}

macro_rules! int_any {
    ($typ: ident) => {
        /// Type of the `ANY` constant.
        #[derive(Clone, Copy, Debug)]
        #[must_use = "strategies do nothing unless used"]
        pub struct Any(());
        /// Generates integers with completely arbitrary values, uniformly
        /// distributed over the whole range.
        pub const ANY: Any = Any(());

        impl Strategy for Any {
            type Tree = BinarySearch;
            type Value = $typ;

            fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
                Ok(BinarySearch::new(runner.rng().gen()))
            }
        }
    };
}

macro_rules! numeric_api {
    ($typ:ident, $epsilon:expr) => {
        impl Strategy for ::core::ops::Range<$typ> {
            type Tree = BinarySearch;
            type Value = $typ;

            fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
                Ok(BinarySearch::new_clamped(
                    self.start,
                    $crate::num::sample_uniform(runner, self.clone()),
                    self.end - $epsilon,
                ))
            }
        }

        impl Strategy for ::core::ops::RangeInclusive<$typ> {
            type Tree = BinarySearch;
            type Value = $typ;

            fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
                Ok(BinarySearch::new_clamped(
                    *self.start(),
                    $crate::num::sample_uniform_incl(
                        runner,
                        *self.start(),
                        *self.end(),
                    ),
                    *self.end(),
                ))
            }
        }

        impl Strategy for ::core::ops::RangeFrom<$typ> {
            type Tree = BinarySearch;
            type Value = $typ;

            fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
                Ok(BinarySearch::new_clamped(
                    self.start,
                    $crate::num::sample_uniform_incl(
                        runner,
                        self.start,
                        ::core::$typ::MAX,
                    ),
                    ::core::$typ::MAX,
                ))
            }
        }

        impl Strategy for ::core::ops::RangeTo<$typ> {
            type Tree = BinarySearch;
            type Value = $typ;

            fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
                Ok(BinarySearch::new_clamped(
                    ::core::$typ::MIN,
                    $crate::num::sample_uniform(
                        runner,
                        ::core::$typ::MIN..self.end,
                    ),
                    self.end,
                ))
            }
        }

        impl Strategy for ::core::ops::RangeToInclusive<$typ> {
            type Tree = BinarySearch;
            type Value = $typ;

            fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
                Ok(BinarySearch::new_clamped(
                    ::core::$typ::MIN,
                    $crate::num::sample_uniform_incl(
                        runner,
                        ::core::$typ::MIN,
                        self.end,
                    ),
                    self.end,
                ))
            }
        }
    };
}

macro_rules! signed_integer_bin_search {
    ($typ:ident) => {
        #[allow(missing_docs)]
        pub mod $typ {
            use rand::Rng;

            use crate::strategy::*;
            use crate::test_runner::TestRunner;

            int_any!($typ);

            /// Shrinks an integer towards 0, using binary search to find
            /// boundary points.
            #[derive(Clone, Copy, Debug)]
            pub struct BinarySearch {
                lo: $typ,
                curr: $typ,
                hi: $typ,
            }
            impl BinarySearch {
                /// Creates a new binary searcher starting at the given value.
                pub fn new(start: $typ) -> Self {
                    BinarySearch {
                        lo: 0,
                        curr: start,
                        hi: start,
                    }
                }

                /// Creates a new binary searcher which will not produce values
                /// on the other side of `lo` or `hi` from `start`. `lo` is
                /// inclusive, `hi` is exclusive.
                fn new_clamped(lo: $typ, start: $typ, hi: $typ) -> Self {
                    use core::cmp::{max, min};

                    BinarySearch {
                        lo: if start < 0 {
                            min(0, hi - 1)
                        } else {
                            max(0, lo)
                        },
                        hi: start,
                        curr: start,
                    }
                }

                fn reposition(&mut self) -> bool {
                    // Won't ever overflow since lo starts at 0 and advances
                    // towards hi.
                    let interval = self.hi - self.lo;
                    let new_mid = self.lo + interval / 2;

                    if new_mid == self.curr {
                        false
                    } else {
                        self.curr = new_mid;
                        true
                    }
                }

                fn magnitude_greater(lhs: $typ, rhs: $typ) -> bool {
                    if 0 == lhs {
                        false
                    } else if lhs < 0 {
                        lhs < rhs
                    } else {
                        lhs > rhs
                    }
                }
            }
            impl ValueTree for BinarySearch {
                type Value = $typ;

                fn current(&self) -> $typ {
                    self.curr
                }

                fn simplify(&mut self) -> bool {
                    if !BinarySearch::magnitude_greater(self.hi, self.lo) {
                        return false;
                    }

                    self.hi = self.curr;
                    self.reposition()
                }

                fn complicate(&mut self) -> bool {
                    if !BinarySearch::magnitude_greater(self.hi, self.lo) {
                        return false;
                    }

                    self.lo = self.curr + if self.hi < 0 { -1 } else { 1 };

                    self.reposition()
                }
            }

            numeric_api!($typ, 1);
        }
    };
}

macro_rules! unsigned_integer_bin_search {
    ($typ:ident) => {
        #[allow(missing_docs)]
        pub mod $typ {
            use rand::Rng;

            use crate::strategy::*;
            use crate::test_runner::TestRunner;

            int_any!($typ);

            /// Shrinks an integer towards 0, using binary search to find
            /// boundary points.
            #[derive(Clone, Copy, Debug)]
            pub struct BinarySearch {
                lo: $typ,
                curr: $typ,
                hi: $typ,
            }
            impl BinarySearch {
                /// Creates a new binary searcher starting at the given value.
                pub fn new(start: $typ) -> Self {
                    BinarySearch {
                        lo: 0,
                        curr: start,
                        hi: start,
                    }
                }

                /// Creates a new binary searcher which will not search below
                /// the given `lo` value.
                fn new_clamped(lo: $typ, start: $typ, _hi: $typ) -> Self {
                    BinarySearch {
                        lo: lo,
                        curr: start,
                        hi: start,
                    }
                }

                /// Creates a new binary searcher which will not search below
                /// the given `lo` value.
                pub fn new_above(lo: $typ, start: $typ) -> Self {
                    BinarySearch::new_clamped(lo, start, start)
                }

                fn reposition(&mut self) -> bool {
                    let interval = self.hi - self.lo;
                    let new_mid = self.lo + interval / 2;

                    if new_mid == self.curr {
                        false
                    } else {
                        self.curr = new_mid;
                        true
                    }
                }
            }
            impl ValueTree for BinarySearch {
                type Value = $typ;

                fn current(&self) -> $typ {
                    self.curr
                }

                fn simplify(&mut self) -> bool {
                    if self.hi <= self.lo {
                        return false;
                    }

                    self.hi = self.curr;
                    self.reposition()
                }

                fn complicate(&mut self) -> bool {
                    if self.hi <= self.lo {
                        return false;
                    }

                    self.lo = self.curr + 1;
                    self.reposition()
                }
            }

            numeric_api!($typ, 1);
        }
    };
}

signed_integer_bin_search!(i8);
signed_integer_bin_search!(i16);
signed_integer_bin_search!(i32);
signed_integer_bin_search!(i64);
#[cfg(not(target_arch = "wasm32"))]
signed_integer_bin_search!(i128);
signed_integer_bin_search!(isize);
unsigned_integer_bin_search!(u8);
unsigned_integer_bin_search!(u16);
unsigned_integer_bin_search!(u32);
unsigned_integer_bin_search!(u64);
#[cfg(not(target_arch = "wasm32"))]
unsigned_integer_bin_search!(u128);
unsigned_integer_bin_search!(usize);

bitflags! {
    pub(crate) struct FloatTypes: u32 {
        const POSITIVE          = 0b0000_0001;
        const NEGATIVE          = 0b0000_0010;
        const NORMAL            = 0b0000_0100;
        const SUBNORMAL         = 0b0000_1000;
        const ZERO              = 0b0001_0000;
        const INFINITE          = 0b0010_0000;
        const QUIET_NAN         = 0b0100_0000;
        const SIGNALING_NAN     = 0b1000_0000;
        const ANY =
            Self::POSITIVE.bits |
            Self::NEGATIVE.bits |
            Self::NORMAL.bits |
            Self::SUBNORMAL.bits |
            Self::ZERO.bits |
            Self::INFINITE.bits |
            Self::QUIET_NAN.bits;
    }
}

impl FloatTypes {
    fn normalise(mut self) -> Self {
        if !self.intersects(FloatTypes::POSITIVE | FloatTypes::NEGATIVE) {
            self |= FloatTypes::POSITIVE;
        }

        if !self.intersects(
            FloatTypes::NORMAL
                | FloatTypes::SUBNORMAL
                | FloatTypes::ZERO
                | FloatTypes::INFINITE
                | FloatTypes::QUIET_NAN
                | FloatTypes::SIGNALING_NAN,
        ) {
            self |= FloatTypes::NORMAL;
        }
        self
    }
}

trait FloatLayout
where
    Standard: Distribution<Self::Bits>,
{
    type Bits: Copy;

    const SIGN_MASK: Self::Bits;
    const EXP_MASK: Self::Bits;
    const EXP_ZERO: Self::Bits;
    const MANTISSA_MASK: Self::Bits;
}

impl FloatLayout for f32 {
    type Bits = u32;

    const SIGN_MASK: u32 = 0x8000_0000;
    const EXP_MASK: u32 = 0x7F80_0000;
    const EXP_ZERO: u32 = 0x3F80_0000;
    const MANTISSA_MASK: u32 = 0x007F_FFFF;
}

impl FloatLayout for f64 {
    type Bits = u64;

    const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
    const EXP_MASK: u64 = 0x7FF0_0000_0000_0000;
    const EXP_ZERO: u64 = 0x3FF0_0000_0000_0000;
    const MANTISSA_MASK: u64 = 0x000F_FFFF_FFFF_FFFF;
}

macro_rules! float_any {
    ($typ:ident) => {
        /// Strategies which produce floating-point values from particular
        /// classes. See the various `Any`-typed constants in this module.
        ///
        /// Note that this usage is fairly advanced and primarily useful to
        /// implementors of algorithms that need to handle wild values in a
        /// particular way. For testing things like graphics processing or game
        /// physics, simply using ranges (e.g., `-1.0..2.0`) will often be more
        /// practical.
        ///
        /// `Any` can be OR'ed to combine multiple classes. For example,
        /// `POSITIVE | INFINITE` will generate arbitrary positive, non-NaN
        /// floats, including positive infinity (but not negative infinity, of
        /// course).
        ///
        /// If neither `POSITIVE` nor `NEGATIVE` has been OR'ed into an `Any`
        /// but a type to be generated requires a sign, `POSITIVE` is assumed.
        /// If no classes are OR'ed into an `Any` (i.e., only `POSITIVE` and/or
        /// `NEGATIVE` are given), `NORMAL` is assumed.
        ///
        /// The various float classes are assigned fixed weights for generation
        /// which are believed to be reasonable for most applications. Roughly:
        ///
        /// - If `POSITIVE | NEGATIVE`, the sign is evenly distributed between
        ///   both options.
        ///
        /// - Classes are weighted as follows, in descending order:
        ///   `NORMAL` > `ZERO` > `SUBNORMAL` > `INFINITE` > `QUIET_NAN` =
        ///   `SIGNALING_NAN`.
        #[derive(Clone, Copy, Debug)]
        #[must_use = "strategies do nothing unless used"]
        pub struct Any(FloatTypes);

        #[cfg(test)]
        impl Any {
            pub(crate) fn from_bits(bits: u32) -> Self {
                Any(FloatTypes::from_bits_truncate(bits))
            }

            pub(crate) fn normal_bits(&self) -> FloatTypes {
                self.0.normalise()
            }
        }

        impl ops::BitOr for Any {
            type Output = Self;

            fn bitor(self, rhs: Self) -> Self {
                Any(self.0 | rhs.0)
            }
        }

        impl ops::BitOrAssign for Any {
            fn bitor_assign(&mut self, rhs: Self) {
                self.0 |= rhs.0
            }
        }

        /// Generates positive floats
        ///
        /// By itself, implies the `NORMAL` class, unless another class is
        /// OR'ed in. That is, using `POSITIVE` as a strategy by itself will
        /// generate arbitrary values between the type's `MIN_POSITIVE` and
        /// `MAX`, while `POSITIVE | INFINITE` would only allow generating
        /// positive infinity.
        pub const POSITIVE: Any = Any(FloatTypes::POSITIVE);
        /// Generates negative floats.
        ///
        /// By itself, implies the `NORMAL` class, unless another class is
        /// OR'ed in. That is, using `POSITIVE` as a strategy by itself will
        /// generate arbitrary values between the type's `MIN` and
        /// `-MIN_POSITIVE`, while `NEGATIVE | INFINITE` would only allow
        /// generating positive infinity.
        pub const NEGATIVE: Any = Any(FloatTypes::NEGATIVE);
        /// Generates "normal" floats.
        ///
        /// These are finite values where the first bit of the mantissa is an
        /// implied `1`. When positive, this represents the range
        /// `MIN_POSITIVE` through `MAX`, both inclusive.
        ///
        /// Generated values are uniform over the discrete floating-point
        /// space, which means the numeric distribution is an inverse
        /// exponential step function. For example, values between 1.0 and 2.0
        /// are generated with the same frequency as values between 2.0 and
        /// 4.0, even though the latter covers twice the numeric range.
        ///
        /// If neither `POSITIVE` nor `NEGATIVE` is OR'ed with this constant,
        /// `POSITIVE` is implied.
        pub const NORMAL: Any = Any(FloatTypes::NORMAL);
        /// Generates subnormal floats.
        ///
        /// These are finite non-zero values where the first bit of the
        /// mantissa is not an implied zero. When positive, this represents the
        /// range `MIN`, inclusive, through `MIN_POSITIVE`, exclusive.
        ///
        /// Subnormals are generated with a uniform distribution both in terms
        /// of discrete floating-point space and numerically.
        ///
        /// If neither `POSITIVE` nor `NEGATIVE` is OR'ed with this constant,
        /// `POSITIVE` is implied.
        pub const SUBNORMAL: Any = Any(FloatTypes::SUBNORMAL);
        /// Generates zero-valued floats.
        ///
        /// Note that IEEE floats support both positive and negative zero, so
        /// this class does interact with the sign flags.
        ///
        /// If neither `POSITIVE` nor `NEGATIVE` is OR'ed with this constant,
        /// `POSITIVE` is implied.
        pub const ZERO: Any = Any(FloatTypes::ZERO);
        /// Generates infinity floats.
        ///
        /// If neither `POSITIVE` nor `NEGATIVE` is OR'ed with this constant,
        /// `POSITIVE` is implied.
        pub const INFINITE: Any = Any(FloatTypes::INFINITE);
        /// Generates "Quiet NaN" floats.
        ///
        /// Operations on quiet NaNs generally simply propagate the NaN rather
        /// than invoke any exception mechanism.
        ///
        /// The payload of the NaN is uniformly distributed over the possible
        /// values which safe Rust allows, including the sign bit (as
        /// controlled by `POSITIVE` and `NEGATIVE`).
        ///
        /// Note however that in Rust 1.23.0 and earlier, this constitutes only
        /// one particular payload due to apparent issues with particular MIPS
        /// and PA-RISC processors which fail to implement IEEE 754-2008
        /// correctly.
        ///
        /// On Rust 1.24.0 and later, this does produce arbitrary payloads as
        /// documented.
        ///
        /// On platforms where the CPU and the IEEE standard disagree on the
        /// format of a quiet NaN, values generated conform to the hardware's
        /// expectations.
        pub const QUIET_NAN: Any = Any(FloatTypes::QUIET_NAN);
        /// Generates "Signaling NaN" floats if allowed by the platform.
        ///
        /// On most platforms, signalling NaNs by default behave the same as
        /// quiet NaNs, but it is possible to configure the OS or CPU to raise
        /// an asynchronous exception if an operation is performed on a
        /// signalling NaN.
        ///
        /// In Rust 1.23.0 and earlier, this silently behaves the same as
        /// [`QUIET_NAN`](const.QUIET_NAN.html).
        ///
        /// On platforms where the CPU and the IEEE standard disagree on the
        /// format of a quiet NaN, values generated conform to the hardware's
        /// expectations.
        ///
        /// Note that certain platforms — most notably, x86/AMD64 — allow the
        /// architecture to turn a signalling NaN into a quiet NaN with the
        /// same payload. Whether this happens can depend on what registers the
        /// compiler decides to use to pass the value around, what CPU flags
        /// are set, and what compiler settings are in use.
        pub const SIGNALING_NAN: Any = Any(FloatTypes::SIGNALING_NAN);

        /// Generates literally arbitrary floating-point values, including
        /// infinities and quiet NaNs (but not signaling NaNs).
        ///
        /// Equivalent to `POSITIVE | NEGATIVE | NORMAL | SUBNORMAL | ZERO |
        /// INFINITE | QUIET_NAN`.
        ///
        /// See [`SIGNALING_NAN`](const.SIGNALING_NAN.html) if you also want to
        /// generate signalling NaNs. This signalling NaNs are not included by
        /// default since in most contexts they either make no difference, or
        /// if the process enabled the relevant CPU mode, result in
        /// hardware-triggered exceptions that usually just abort the process.
        ///
        /// Before proptest 0.4.1, this erroneously generated values in the
        /// range 0.0..1.0.
        pub const ANY: Any = Any(FloatTypes::ANY);

        impl Strategy for Any {
            type Tree = BinarySearch;
            type Value = $typ;

            fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
                let flags = self.0.normalise();
                let sign_mask = if flags.contains(FloatTypes::NEGATIVE) {
                    $typ::SIGN_MASK
                } else {
                    0
                };
                let sign_or = if flags.contains(FloatTypes::POSITIVE) {
                    0
                } else {
                    $typ::SIGN_MASK
                };

                macro_rules! weight {
                    ($case:ident, $weight:expr) => {
                        if flags.contains(FloatTypes::$case) {
                            $weight
                        } else {
                            0
                        }
                    }
                }

                // A few CPUs disagree with IEEE about the meaning of the
                // signalling bit. Assume the `NAN` constant is a quiet NaN as
                // interpreted by the hardware and generate values based on
                // that.
                let quiet_or = ::core::$typ::NAN.to_bits() &
                    ($typ::EXP_MASK | ($typ::EXP_MASK >> 1));
                let signaling_or = (quiet_or ^ ($typ::EXP_MASK >> 1)) |
                    $typ::EXP_MASK;

                let (class_mask, class_or, allow_edge_exp, allow_zero_mant) =
                    prop_oneof![
                        weight!(NORMAL, 20) => Just(
                            ($typ::EXP_MASK | $typ::MANTISSA_MASK, 0,
                             false, true)),
                        weight!(SUBNORMAL, 3) => Just(
                            ($typ::MANTISSA_MASK, 0, true, false)),
                        weight!(ZERO, 4) => Just(
                            (0, 0, true, true)),
                        weight!(INFINITE, 2) => Just(
                            (0, $typ::EXP_MASK, true, true)),
                        weight!(QUIET_NAN, 1) => Just(
                            ($typ::MANTISSA_MASK >> 1, quiet_or,
                             true, false)),
                        weight!(SIGNALING_NAN, 1) => Just(
                            ($typ::MANTISSA_MASK >> 1, signaling_or,
                             true, false)),
                    ].new_tree(runner)?.current();

                let mut generated_value: <$typ as FloatLayout>::Bits =
                    runner.rng().gen();
                generated_value &= sign_mask | class_mask;
                generated_value |= sign_or | class_or;
                let exp = generated_value & $typ::EXP_MASK;
                if !allow_edge_exp && (0 == exp || $typ::EXP_MASK == exp) {
                    generated_value &= !$typ::EXP_MASK;
                    generated_value |= $typ::EXP_ZERO;
                }
                if !allow_zero_mant &&
                    0 == generated_value & $typ::MANTISSA_MASK
                {
                    generated_value |= 1;
                }

                Ok(BinarySearch::new_with_types(
                    $typ::from_bits(generated_value), flags))
            }
        }
    }
}

macro_rules! float_bin_search {
    ($typ:ident) => {
        #[allow(missing_docs)]
        pub mod $typ {
            use core::ops;
            #[cfg(not(feature = "std"))]
            use num_traits::float::FloatCore;

            use rand::Rng;

            use super::{FloatLayout, FloatTypes};
            use crate::strategy::*;
            use crate::test_runner::TestRunner;

            float_any!($typ);

            /// Shrinks a float towards 0, using binary search to find boundary
            /// points.
            ///
            /// Non-finite values immediately shrink to 0.
            #[derive(Clone, Copy, Debug)]
            pub struct BinarySearch {
                lo: $typ,
                curr: $typ,
                hi: $typ,
                allowed: FloatTypes,
            }

            impl BinarySearch {
                /// Creates a new binary searcher starting at the given value.
                pub fn new(start: $typ) -> Self {
                    BinarySearch {
                        lo: 0.0,
                        curr: start,
                        hi: start,
                        allowed: FloatTypes::all(),
                    }
                }

                fn new_with_types(start: $typ, allowed: FloatTypes) -> Self {
                    BinarySearch {
                        lo: 0.0,
                        curr: start,
                        hi: start,
                        allowed,
                    }
                }

                /// Creates a new binary searcher which will not produce values
                /// on the other side of `lo` or `hi` from `start`. `lo` is
                /// inclusive, `hi` is exclusive.
                fn new_clamped(lo: $typ, start: $typ, hi: $typ) -> Self {
                    BinarySearch {
                        lo: if start.is_sign_negative() {
                            hi.min(0.0)
                        } else {
                            lo.max(0.0)
                        },
                        hi: start,
                        curr: start,
                        allowed: FloatTypes::all(),
                    }
                }

                fn current_allowed(&self) -> bool {
                    use core::num::FpCategory::*;

                    // Don't reposition if the new value is not allowed
                    let class_allowed = match self.curr.classify() {
                        Nan =>
                        // We don't need to inspect whether the
                        // signallingness of the NaN matches the allowed
                        // set, as we never try to switch between them,
                        // instead shrinking to 0.
                        {
                            self.allowed.contains(FloatTypes::QUIET_NAN)
                                || self
                                    .allowed
                                    .contains(FloatTypes::SIGNALING_NAN)
                        }
                        Infinite => self.allowed.contains(FloatTypes::INFINITE),
                        Zero => self.allowed.contains(FloatTypes::ZERO),
                        Subnormal => {
                            self.allowed.contains(FloatTypes::SUBNORMAL)
                        }
                        Normal => self.allowed.contains(FloatTypes::NORMAL),
                    };
                    let signum = self.curr.signum();
                    let sign_allowed = if signum > 0.0 {
                        self.allowed.contains(FloatTypes::POSITIVE)
                    } else if signum < 0.0 {
                        self.allowed.contains(FloatTypes::NEGATIVE)
                    } else {
                        true
                    };

                    class_allowed && sign_allowed
                }

                fn ensure_acceptable(&mut self) {
                    while !self.current_allowed() {
                        if !self.complicate_once() {
                            panic!(
                                "Unable to complicate floating-point back \
                                 to acceptable value"
                            );
                        }
                    }
                }

                fn reposition(&mut self) -> bool {
                    let interval = self.hi - self.lo;
                    let interval =
                        if interval.is_finite() { interval } else { 0.0 };
                    let new_mid = self.lo + interval / 2.0;

                    let new_mid = if new_mid == self.curr || 0.0 == interval {
                        new_mid
                    } else {
                        self.lo
                    };

                    if new_mid == self.curr {
                        false
                    } else {
                        self.curr = new_mid;
                        true
                    }
                }

                fn done(lo: $typ, hi: $typ) -> bool {
                    (lo.abs() > hi.abs() && !hi.is_nan()) || lo.is_nan()
                }

                fn complicate_once(&mut self) -> bool {
                    if BinarySearch::done(self.lo, self.hi) {
                        return false;
                    }

                    self.lo = if self.curr == self.lo {
                        self.hi
                    } else {
                        self.curr
                    };

                    self.reposition()
                }
            }
            impl ValueTree for BinarySearch {
                type Value = $typ;

                fn current(&self) -> $typ {
                    self.curr
                }

                fn simplify(&mut self) -> bool {
                    if BinarySearch::done(self.lo, self.hi) {
                        return false;
                    }

                    self.hi = self.curr;
                    if self.reposition() {
                        self.ensure_acceptable();
                        true
                    } else {
                        false
                    }
                }

                fn complicate(&mut self) -> bool {
                    if self.complicate_once() {
                        self.ensure_acceptable();
                        true
                    } else {
                        false
                    }
                }
            }

            numeric_api!($typ, 0.0);
        }
    };
}

float_bin_search!(f32);
float_bin_search!(f64);

#[cfg(test)]
mod test {
    use crate::strategy::*;
    use crate::test_runner::*;

    use super::*;

    #[test]
    fn u8_inclusive_end_included() {
        let mut runner = TestRunner::deterministic();
        let mut ok = 0;
        for _ in 0..20 {
            let tree = (0..=1).new_tree(&mut runner).unwrap();
            let test = runner.run_one(tree, |v| {
                prop_assert_eq!(v, 1);
                Ok(())
            });
            if test.is_ok() {
                ok += 1;
            }
        }
        assert!(ok > 1, "inclusive end not included.");
    }

    #[test]
    fn u8_inclusive_to_end_included() {
        let mut runner = TestRunner::deterministic();
        let mut ok = 0;
        for _ in 0..20 {
            let tree = (..=1u8).new_tree(&mut runner).unwrap();
            let test = runner.run_one(tree, |v| {
                prop_assert_eq!(v, 1);
                Ok(())
            });
            if test.is_ok() {
                ok += 1;
            }
        }
        assert!(ok > 1, "inclusive end not included.");
    }

    #[test]
    fn i8_binary_search_always_converges() {
        fn assert_converges<P: Fn(i32) -> bool>(start: i8, pass: P) {
            let mut state = i8::BinarySearch::new(start);
            loop {
                if !pass(state.current() as i32) {
                    if !state.simplify() {
                        break;
                    }
                } else {
                    if !state.complicate() {
                        break;
                    }
                }
            }

            assert!(!pass(state.current() as i32));
            assert!(
                pass(state.current() as i32 - 1)
                    || pass(state.current() as i32 + 1)
            );
        }

        for start in -128..0 {
            for target in start + 1..1 {
                assert_converges(start as i8, |v| v > target);
            }
        }

        for start in 0..128 {
            for target in 0..start {
                assert_converges(start as i8, |v| v < target);
            }
        }
    }

    #[test]
    fn u8_binary_search_always_converges() {
        fn assert_converges<P: Fn(u32) -> bool>(start: u8, pass: P) {
            let mut state = u8::BinarySearch::new(start);
            loop {
                if !pass(state.current() as u32) {
                    if !state.simplify() {
                        break;
                    }
                } else {
                    if !state.complicate() {
                        break;
                    }
                }
            }

            assert!(!pass(state.current() as u32));
            assert!(pass(state.current() as u32 - 1));
        }

        for start in 0..255 {
            for target in 0..start {
                assert_converges(start as u8, |v| v <= target);
            }
        }
    }

    #[test]
    fn signed_integer_range_including_zero_converges_to_zero() {
        let mut runner = TestRunner::default();
        for _ in 0..100 {
            let mut state = (-42i32..64i32).new_tree(&mut runner).unwrap();
            let init_value = state.current();
            assert!(init_value >= -42 && init_value < 64);

            while state.simplify() {
                let v = state.current();
                assert!(v >= -42 && v < 64);
            }

            assert_eq!(0, state.current());
        }
    }

    #[test]
    fn negative_integer_range_stays_in_bounds() {
        let mut runner = TestRunner::default();
        for _ in 0..100 {
            let mut state = (..-42i32).new_tree(&mut runner).unwrap();
            let init_value = state.current();
            assert!(init_value < -42);

            while state.simplify() {
                assert!(
                    state.current() < -42,
                    "Violated bounds: {}",
                    state.current()
                );
            }

            assert_eq!(-43, state.current());
        }
    }

    #[test]
    fn positive_signed_integer_range_stays_in_bounds() {
        let mut runner = TestRunner::default();
        for _ in 0..100 {
            let mut state = (42i32..).new_tree(&mut runner).unwrap();
            let init_value = state.current();
            assert!(init_value >= 42);

            while state.simplify() {
                assert!(
                    state.current() >= 42,
                    "Violated bounds: {}",
                    state.current()
                );
            }

            assert_eq!(42, state.current());
        }
    }

    #[test]
    fn unsigned_integer_range_stays_in_bounds() {
        let mut runner = TestRunner::default();
        for _ in 0..100 {
            let mut state = (42u32..56u32).new_tree(&mut runner).unwrap();
            let init_value = state.current();
            assert!(init_value >= 42 && init_value < 56);

            while state.simplify() {
                assert!(
                    state.current() >= 42,
                    "Violated bounds: {}",
                    state.current()
                );
            }

            assert_eq!(42, state.current());
        }
    }

    mod contract_sanity {
        macro_rules! contract_sanity {
            ($t:tt) => {
                mod $t {
                    use crate::strategy::check_strategy_sanity;

                    const FOURTY_TWO: $t = 42 as $t;
                    const FIFTY_SIX: $t = 56 as $t;

                    #[test]
                    fn range() {
                        check_strategy_sanity(FOURTY_TWO..FIFTY_SIX, None);
                    }

                    #[test]
                    fn range_inclusive() {
                        check_strategy_sanity(FOURTY_TWO..=FIFTY_SIX, None);
                    }

                    #[test]
                    fn range_to() {
                        check_strategy_sanity(..FIFTY_SIX, None);
                    }

                    #[test]
                    fn range_to_inclusive() {
                        check_strategy_sanity(..=FIFTY_SIX, None);
                    }

                    #[test]
                    fn range_from() {
                        check_strategy_sanity(FOURTY_TWO.., None);
                    }
                }
            };
        }
        contract_sanity!(u8);
        contract_sanity!(i8);
        contract_sanity!(u16);
        contract_sanity!(i16);
        contract_sanity!(u32);
        contract_sanity!(i32);
        contract_sanity!(u64);
        contract_sanity!(i64);
        contract_sanity!(usize);
        contract_sanity!(isize);
        contract_sanity!(f32);
        contract_sanity!(f64);
    }

    #[test]
    fn unsigned_integer_binsearch_simplify_complicate_contract_upheld() {
        check_strategy_sanity(0u32..1000u32, None);
        check_strategy_sanity(0u32..1u32, None);
    }

    #[test]
    fn signed_integer_binsearch_simplify_complicate_contract_upheld() {
        check_strategy_sanity(0i32..1000i32, None);
        check_strategy_sanity(0i32..1i32, None);
    }

    #[test]
    fn positive_float_simplifies_to_zero() {
        let mut runner = TestRunner::default();
        let mut value = (0.0f64..2.0).new_tree(&mut runner).unwrap();

        while value.simplify() {}

        assert_eq!(0.0, value.current());
    }

    #[test]
    fn positive_float_simplifies_to_base() {
        let mut runner = TestRunner::default();
        let mut value = (1.0f64..2.0).new_tree(&mut runner).unwrap();

        while value.simplify() {}

        assert_eq!(1.0, value.current());
    }

    #[test]
    fn negative_float_simplifies_to_zero() {
        let mut runner = TestRunner::default();
        let mut value = (-2.0f64..0.0).new_tree(&mut runner).unwrap();

        while value.simplify() {}

        assert_eq!(0.0, value.current());
    }

    #[test]
    fn positive_float_complicates_to_original() {
        let mut runner = TestRunner::default();
        let mut value = (1.0f64..2.0).new_tree(&mut runner).unwrap();
        let orig = value.current();

        assert!(value.simplify());
        while value.complicate() {}

        assert_eq!(orig, value.current());
    }

    #[test]
    fn positive_infinity_simplifies_directly_to_zero() {
        let mut value = f64::BinarySearch::new(::std::f64::INFINITY);

        assert!(value.simplify());
        assert_eq!(0.0, value.current());
        assert!(value.complicate());
        assert_eq!(::std::f64::INFINITY, value.current());
        assert!(!value.clone().complicate());
        assert!(!value.clone().simplify());
    }

    #[test]
    fn negative_infinity_simplifies_directly_to_zero() {
        let mut value = f64::BinarySearch::new(::std::f64::NEG_INFINITY);

        assert!(value.simplify());
        assert_eq!(0.0, value.current());
        assert!(value.complicate());
        assert_eq!(::std::f64::NEG_INFINITY, value.current());
        assert!(!value.clone().complicate());
        assert!(!value.clone().simplify());
    }

    #[test]
    fn nan_simplifies_directly_to_zero() {
        let mut value = f64::BinarySearch::new(::std::f64::NAN);

        assert!(value.simplify());
        assert_eq!(0.0, value.current());
        assert!(value.complicate());
        assert!(value.current().is_nan());
        assert!(!value.clone().complicate());
        assert!(!value.clone().simplify());
    }

    #[test]
    fn float_simplifies_to_smallest_normal() {
        let mut runner = TestRunner::default();
        let mut value = (::std::f64::MIN_POSITIVE..2.0)
            .new_tree(&mut runner)
            .unwrap();

        while value.simplify() {}

        assert_eq!(::std::f64::MIN_POSITIVE, value.current());
    }

    macro_rules! float_generation_test_body {
        ($strategy:ident, $typ:ident) => {
            use std::num::FpCategory;

            let strategy = $strategy;
            let bits = strategy.normal_bits();

            let mut seen_positive = 0;
            let mut seen_negative = 0;
            let mut seen_normal = 0;
            let mut seen_subnormal = 0;
            let mut seen_zero = 0;
            let mut seen_infinite = 0;
            let mut seen_quiet_nan = 0;
            let mut seen_signaling_nan = 0;
            let mut runner = TestRunner::deterministic();

            // Check whether this version of Rust honours the NaN payload in
            // from_bits
            let fidelity_1 = f32::from_bits(0x7F80_0001).to_bits();
            let fidelity_2 = f32::from_bits(0xFF80_0001).to_bits();
            let nan_fidelity = fidelity_1 != fidelity_2;

            for _ in 0..1024 {
                let mut tree = strategy.new_tree(&mut runner).unwrap();
                let mut increment = 1;

                loop {
                    let value = tree.current();

                    let sign = value.signum(); // So we correctly handle -0
                    if sign < 0.0 {
                        prop_assert!(bits.contains(FloatTypes::NEGATIVE));
                        seen_negative += increment;
                    } else if sign > 0.0 {
                        // i.e., not NaN
                        prop_assert!(bits.contains(FloatTypes::POSITIVE));
                        seen_positive += increment;
                    }

                    match value.classify() {
                        FpCategory::Nan if nan_fidelity => {
                            let raw = value.to_bits();
                            let is_negative = raw << 1 >> 1 != raw;
                            if is_negative {
                                prop_assert!(
                                    bits.contains(FloatTypes::NEGATIVE)
                                );
                                seen_negative += increment;
                            } else {
                                prop_assert!(
                                    bits.contains(FloatTypes::POSITIVE)
                                );
                                seen_positive += increment;
                            }

                            let is_quiet = raw & ($typ::EXP_MASK >> 1)
                                == ::std::$typ::NAN.to_bits()
                                    & ($typ::EXP_MASK >> 1);
                            if is_quiet {
                                // x86/AMD64 turn signalling NaNs into quiet
                                // NaNs quite aggressively depending on what
                                // registers LLVM decides to use to pass the
                                // value around, so accept either case here.
                                prop_assert!(
                                    bits.contains(FloatTypes::QUIET_NAN)
                                        || bits.contains(
                                            FloatTypes::SIGNALING_NAN
                                        )
                                );
                                seen_quiet_nan += increment;
                                seen_signaling_nan += increment;
                            } else {
                                prop_assert!(
                                    bits.contains(FloatTypes::SIGNALING_NAN)
                                );
                                seen_signaling_nan += increment;
                            }
                        }

                        FpCategory::Nan => {
                            // Since safe Rust doesn't currently allow
                            // generating any NaN other than one particular
                            // payload, don't check the sign or signallingness
                            // and consider this to be both signs and
                            // signallingness for counting purposes.
                            seen_positive += increment;
                            seen_negative += increment;
                            seen_quiet_nan += increment;
                            seen_signaling_nan += increment;
                            prop_assert!(
                                bits.contains(FloatTypes::QUIET_NAN)
                                    || bits.contains(FloatTypes::SIGNALING_NAN)
                            );
                        }
                        FpCategory::Infinite => {
                            prop_assert!(bits.contains(FloatTypes::INFINITE));
                            seen_infinite += increment;
                        }
                        FpCategory::Zero => {
                            prop_assert!(bits.contains(FloatTypes::ZERO));
                            seen_zero += increment;
                        }
                        FpCategory::Subnormal => {
                            prop_assert!(bits.contains(FloatTypes::SUBNORMAL));
                            seen_subnormal += increment;
                        }
                        FpCategory::Normal => {
                            prop_assert!(bits.contains(FloatTypes::NORMAL));
                            seen_normal += increment;
                        }
                    }

                    // Don't count simplified values towards the counts
                    increment = 0;
                    if !tree.simplify() {
                        break;
                    }
                }
            }

            if bits.contains(FloatTypes::POSITIVE) {
                prop_assert!(seen_positive > 200);
            }
            if bits.contains(FloatTypes::NEGATIVE) {
                prop_assert!(seen_negative > 200);
            }
            if bits.contains(FloatTypes::NORMAL) {
                prop_assert!(seen_normal > 100);
            }
            if bits.contains(FloatTypes::SUBNORMAL) {
                prop_assert!(seen_subnormal > 5);
            }
            if bits.contains(FloatTypes::ZERO) {
                prop_assert!(seen_zero > 5);
            }
            if bits.contains(FloatTypes::INFINITE) {
                prop_assert!(seen_infinite > 0);
            }
            if bits.contains(FloatTypes::QUIET_NAN) {
                prop_assert!(seen_quiet_nan > 0);
            }
            if bits.contains(FloatTypes::SIGNALING_NAN) {
                prop_assert!(seen_signaling_nan > 0);
            }
        };
    }

    proptest! {
        #![proptest_config(crate::test_runner::Config::with_cases(1024))]

        #[test]
        fn f32_any_generates_desired_values(
            strategy in crate::bits::u32::ANY.prop_map(f32::Any::from_bits)
        ) {
            float_generation_test_body!(strategy, f32);
        }

        #[test]
        fn f32_any_sanity(
            strategy in crate::bits::u32::ANY.prop_map(f32::Any::from_bits)
        ) {
            check_strategy_sanity(strategy, Some(CheckStrategySanityOptions {
                strict_complicate_after_simplify: false,
                .. CheckStrategySanityOptions::default()
            }));
        }

        #[test]
        fn f64_any_generates_desired_values(
            strategy in crate::bits::u32::ANY.prop_map(f64::Any::from_bits)
        ) {
            float_generation_test_body!(strategy, f64);
        }

        #[test]
        fn f64_any_sanity(
            strategy in crate::bits::u32::ANY.prop_map(f64::Any::from_bits)
        ) {
            check_strategy_sanity(strategy, Some(CheckStrategySanityOptions {
                strict_complicate_after_simplify: false,
                .. CheckStrategySanityOptions::default()
            }));
        }
    }
}