1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
//! Unix implementation of waiting for children with timeouts
//!
//! On unix, wait() and its friends have no timeout parameters, so there is
//! no way to time out a thread in wait(). From some googling and some
//! thinking, it appears that there are a few ways to handle timeouts in
//! wait(), but the only real reasonable one for a multi-threaded program is
//! to listen for SIGCHLD.
//!
//! With this in mind, the waiting mechanism with a timeout only uses
//! waitpid() with WNOHANG, but otherwise all the necessary blocking is done by
//! waiting for a SIGCHLD to arrive (and that blocking has a timeout). Note,
//! however, that waitpid() is still used to actually reap the child.
//!
//! Signal handling is super tricky in general, and this is no exception. Due
//! to the async nature of SIGCHLD, we use the self-pipe trick to transmit
//! data out of the signal handler to the rest of the application.
#![allow(bad_style)]
use std::cmp;
use std::collections::HashMap;
use std::io::{self, Write, Read};
use std::os::unix::net::UnixStream;
use std::mem;
use std::os::unix::prelude::*;
use std::process::{Child, ExitStatus};
use std::sync::{Once, ONCE_INIT, Mutex};
use std::time::{Duration, Instant};
use libc::{self, c_int};
static INIT: Once = ONCE_INIT;
static mut STATE: *mut State = 0 as *mut _;
struct State {
prev: libc::sigaction,
write: UnixStream,
read: UnixStream,
map: Mutex<StateMap>,
}
type StateMap = HashMap<*mut Child, (UnixStream, Option<ExitStatus>)>;
pub fn wait_timeout(child: &mut Child, dur: Duration)
-> io::Result<Option<ExitStatus>> {
INIT.call_once(State::init);
unsafe {
(*STATE).wait_timeout(child, dur)
}
}
// Do $value as type_of($target)
macro_rules! _as {
($value:expr, $target:expr) => (
{
let mut x = $target;
x = $value as _;
x
}
)
}
impl State {
#[allow(unused_assignments)]
fn init() {
unsafe {
// Create our "self pipe" and then set both ends to nonblocking
// mode.
let (read, write) = UnixStream::pair().unwrap();
read.set_nonblocking(true).unwrap();
write.set_nonblocking(true).unwrap();
let mut state = Box::new(State {
prev: mem::zeroed(),
write: write,
read: read,
map: Mutex::new(HashMap::new()),
});
// Register our sigchld handler
let mut new: libc::sigaction = mem::zeroed();
new.sa_sigaction = sigchld_handler as usize;
// FIXME: remove this workaround when the PR to libc get merged and released
//
// This is a workaround for the type mismatch in the definition of SA_*
// constants for android. See https://github.com/rust-lang/libc/pull/511
//
let sa_flags = new.sa_flags;
new.sa_flags = _as!(libc::SA_NOCLDSTOP, sa_flags) |
_as!(libc::SA_RESTART, sa_flags) |
_as!(libc::SA_SIGINFO, sa_flags);
assert_eq!(libc::sigaction(libc::SIGCHLD, &new, &mut state.prev), 0);
STATE = mem::transmute(state);
}
}
fn wait_timeout(&self, child: &mut Child, dur: Duration)
-> io::Result<Option<ExitStatus>> {
// First up, prep our notification pipe which will tell us when our
// child has been reaped (other threads may signal this pipe).
let (read, write) = UnixStream::pair()?;
read.set_nonblocking(true)?;
write.set_nonblocking(true)?;
// Next, take a lock on the map of children currently waiting. Right
// after this, **before** we add ourselves to the map, we check to see
// if our child has actually already exited via a `try_wait`. If the
// child has exited then we return immediately as we'll never otherwise
// receive a SIGCHLD notification.
//
// If the wait reports the child is still running, however, we add
// ourselves to the map and then block in `select` waiting for something
// to happen.
let mut map = self.map.lock().unwrap();
if let Some(status) = child.try_wait()? {
return Ok(Some(status))
}
assert!(map.insert(child, (write, None)).is_none());
drop(map);
// Make sure that no matter what when we exit our pointer is removed
// from the map.
struct Remove<'a> {
state: &'a State,
child: &'a mut Child,
}
impl<'a> Drop for Remove<'a> {
fn drop(&mut self) {
let mut map = self.state.map.lock().unwrap();
drop(map.remove(&(self.child as *mut Child)));
}
}
let remove = Remove { state: self, child };
// Alright, we're guaranteed that we'll eventually get a SIGCHLD due
// to our `try_wait` failing, and we're also guaranteed that we'll
// get notified about this because we're in the map. Next up wait
// for an event.
//
// Note that this happens in a loop for two reasons; we could
// receive EINTR or we could pick up a SIGCHLD for other threads but not
// actually be ready oureslves.
let start = Instant::now();
let mut fds = [
libc::pollfd {
fd: self.read.as_raw_fd(),
events: libc::POLLIN,
revents: 0,
},
libc::pollfd {
fd: read.as_raw_fd(),
events: libc::POLLIN,
revents: 0,
},
];
loop {
let elapsed = start.elapsed();
if elapsed >= dur {
break
}
let timeout = dur - elapsed;
let timeout = timeout.as_secs().checked_mul(1_000)
.and_then(|amt| {
amt.checked_add(timeout.subsec_nanos() as u64 / 1_000_000)
})
.unwrap_or(u64::max_value());
let timeout = cmp::min(<c_int>::max_value() as u64, timeout) as c_int;
let r = unsafe {
libc::poll(fds.as_mut_ptr(), 2, timeout)
};
let timeout = match r {
0 => true,
n if n > 0 => false,
n => {
let err = io::Error::last_os_error();
if err.kind() == io::ErrorKind::Interrupted {
continue
} else {
panic!("error in select = {}: {}", n, err)
}
}
};
// Now that something has happened, we need to process what actually
// happened. There's are three reasons we could have woken up:
//
// 1. The file descriptor in our SIGCHLD handler was written to.
// This means that a SIGCHLD was received and we need to poll the
// entire list of waiting processes to figure out which ones
// actually exited.
// 2. Our file descriptor was written to. This means that another
// thread reaped our child and listed the exit status in the
// local map.
// 3. We timed out. This means we need to remove ourselves from the
// map and simply carry on.
//
// In the case that a SIGCHLD signal was received, we do that
// processing and keep going. If our fd was written to or a timeout
// was received then we break out of the loop and return from this
// call.
let mut map = self.map.lock().unwrap();
if drain(&self.read) {
self.process_sigchlds(&mut map);
}
if drain(&read) || timeout {
break
}
}
let mut map = self.map.lock().unwrap();
let (_write, ret) = map.remove(&(remove.child as *mut Child)).unwrap();
drop(map);
Ok(ret)
}
fn process_sigchlds(&self, map: &mut StateMap) {
for (&k, &mut (ref write, ref mut status)) in map {
// Already reaped, nothing to do here
if status.is_some() {
continue
}
*status = unsafe { (*k).try_wait().unwrap() };
if status.is_some() {
notify(write);
}
}
}
}
fn drain(mut file: &UnixStream) -> bool {
let mut ret = false;
let mut buf = [0u8; 16];
loop {
match file.read(&mut buf) {
Ok(0) => return true, // EOF == something happened
Ok(..) => ret = true, // data read, but keep draining
Err(e) => {
if e.kind() == io::ErrorKind::WouldBlock {
return ret
} else {
panic!("bad read: {}", e)
}
}
}
}
}
fn notify(mut file: &UnixStream) {
match file.write(&[1]) {
Ok(..) => {}
Err(e) => {
if e.kind() != io::ErrorKind::WouldBlock {
panic!("bad error on write fd: {}", e)
}
}
}
}
// Signal handler for SIGCHLD signals, must be async-signal-safe!
//
// This function will write to the writing half of the "self pipe" to wake
// up the helper thread if it's waiting. Note that this write must be
// nonblocking because if it blocks and the reader is the thread we
// interrupted, then we'll deadlock.
//
// When writing, if the write returns EWOULDBLOCK then we choose to ignore
// it. At that point we're guaranteed that there's something in the pipe
// which will wake up the other end at some point, so we just allow this
// signal to be coalesced with the pending signals on the pipe.
#[allow(unused_assignments)]
extern fn sigchld_handler(signum: c_int,
info: *mut libc::siginfo_t,
ptr: *mut libc::c_void) {
type FnSigaction = extern fn(c_int, *mut libc::siginfo_t, *mut libc::c_void);
type FnHandler = extern fn(c_int);
unsafe {
let state = &*STATE;
notify(&state.write);
let fnptr = state.prev.sa_sigaction;
if fnptr == 0 {
return
}
// FIXME: remove this workaround when the PR to libc get merged and released
//
// This is a workaround for the type mismatch in the definition of SA_*
// constants for android. See https://github.com/rust-lang/libc/pull/511
//
if state.prev.sa_flags & _as!(libc::SA_SIGINFO, state.prev.sa_flags) == 0 {
let action = mem::transmute::<usize, FnHandler>(fnptr);
action(signum)
} else {
let action = mem::transmute::<usize, FnSigaction>(fnptr);
action(signum, info, ptr)
}
}
}