pub struct BitSet<B = u32> { /* private fields */ }

Implementations

Creates a new empty BitSet.

Examples
use bit_set::BitSet;

let mut s = BitSet::new();

Creates a new BitSet with initially no contents, able to hold nbits elements without resizing.

Examples
use bit_set::BitSet;

let mut s = BitSet::with_capacity(100);
assert!(s.capacity() >= 100);

Creates a new BitSet from the given bit vector.

Examples
extern crate bit_vec;
extern crate bit_set;

fn main() {
    use bit_vec::BitVec;
    use bit_set::BitSet;

    let bv = BitVec::from_bytes(&[0b01100000]);
    let s = BitSet::from_bit_vec(bv);

    // Print 1, 2 in arbitrary order
    for x in s.iter() {
        println!("{}", x);
    }
}

Returns the capacity in bits for this bit vector. Inserting any element less than this amount will not trigger a resizing.

Examples
use bit_set::BitSet;

let mut s = BitSet::with_capacity(100);
assert!(s.capacity() >= 100);

Reserves capacity for the given BitSet to contain len distinct elements. In the case of BitSet this means reallocations will not occur as long as all inserted elements are less than len.

The collection may reserve more space to avoid frequent reallocations.

Examples
use bit_set::BitSet;

let mut s = BitSet::new();
s.reserve_len(10);
assert!(s.capacity() >= 10);

Reserves the minimum capacity for the given BitSet to contain len distinct elements. In the case of BitSet this means reallocations will not occur as long as all inserted elements are less than len.

Note that the allocator may give the collection more space than it requests. Therefore capacity can not be relied upon to be precisely minimal. Prefer reserve_len if future insertions are expected.

Examples
use bit_set::BitSet;

let mut s = BitSet::new();
s.reserve_len_exact(10);
assert!(s.capacity() >= 10);

Consumes this set to return the underlying bit vector.

Examples
use bit_set::BitSet;

let mut s = BitSet::new();
s.insert(0);
s.insert(3);

let bv = s.into_bit_vec();
assert!(bv[0]);
assert!(bv[3]);

Returns a reference to the underlying bit vector.

Examples
use bit_set::BitSet;

let mut s = BitSet::new();
s.insert(0);

let bv = s.get_ref();
assert_eq!(bv[0], true);

Truncates the underlying vector to the least length required.

Examples
use bit_set::BitSet;

let mut s = BitSet::new();
s.insert(32183231);
s.remove(32183231);

// Internal storage will probably be bigger than necessary
println!("old capacity: {}", s.capacity());

// Now should be smaller
s.shrink_to_fit();
println!("new capacity: {}", s.capacity());

Iterator over each usize stored in the BitSet.

Examples
use bit_set::BitSet;

let s = BitSet::from_bytes(&[0b01001010]);

// Print 1, 4, 6 in arbitrary order
for x in s.iter() {
    println!("{}", x);
}

Iterator over each usize stored in self union other. See union_with for an efficient in-place version.

Examples
use bit_set::BitSet;

let a = BitSet::from_bytes(&[0b01101000]);
let b = BitSet::from_bytes(&[0b10100000]);

// Print 0, 1, 2, 4 in arbitrary order
for x in a.union(&b) {
    println!("{}", x);
}

Iterator over each usize stored in self intersect other. See intersect_with for an efficient in-place version.

Examples
use bit_set::BitSet;

let a = BitSet::from_bytes(&[0b01101000]);
let b = BitSet::from_bytes(&[0b10100000]);

// Print 2
for x in a.intersection(&b) {
    println!("{}", x);
}

Iterator over each usize stored in the self setminus other. See difference_with for an efficient in-place version.

Examples
use bit_set::BitSet;

let a = BitSet::from_bytes(&[0b01101000]);
let b = BitSet::from_bytes(&[0b10100000]);

// Print 1, 4 in arbitrary order
for x in a.difference(&b) {
    println!("{}", x);
}

// Note that difference is not symmetric,
// and `b - a` means something else.
// This prints 0
for x in b.difference(&a) {
    println!("{}", x);
}

Iterator over each usize stored in the symmetric difference of self and other. See symmetric_difference_with for an efficient in-place version.

Examples
use bit_set::BitSet;

let a = BitSet::from_bytes(&[0b01101000]);
let b = BitSet::from_bytes(&[0b10100000]);

// Print 0, 1, 4 in arbitrary order
for x in a.symmetric_difference(&b) {
    println!("{}", x);
}

Unions in-place with the specified other bit vector.

Examples
use bit_set::BitSet;

let a   = 0b01101000;
let b   = 0b10100000;
let res = 0b11101000;

let mut a = BitSet::from_bytes(&[a]);
let b = BitSet::from_bytes(&[b]);
let res = BitSet::from_bytes(&[res]);

a.union_with(&b);
assert_eq!(a, res);

Intersects in-place with the specified other bit vector.

Examples
use bit_set::BitSet;

let a   = 0b01101000;
let b   = 0b10100000;
let res = 0b00100000;

let mut a = BitSet::from_bytes(&[a]);
let b = BitSet::from_bytes(&[b]);
let res = BitSet::from_bytes(&[res]);

a.intersect_with(&b);
assert_eq!(a, res);

Makes this bit vector the difference with the specified other bit vector in-place.

Examples
use bit_set::BitSet;

let a   = 0b01101000;
let b   = 0b10100000;
let a_b = 0b01001000; // a - b
let b_a = 0b10000000; // b - a

let mut bva = BitSet::from_bytes(&[a]);
let bvb = BitSet::from_bytes(&[b]);
let bva_b = BitSet::from_bytes(&[a_b]);
let bvb_a = BitSet::from_bytes(&[b_a]);

bva.difference_with(&bvb);
assert_eq!(bva, bva_b);

let bva = BitSet::from_bytes(&[a]);
let mut bvb = BitSet::from_bytes(&[b]);

bvb.difference_with(&bva);
assert_eq!(bvb, bvb_a);

Makes this bit vector the symmetric difference with the specified other bit vector in-place.

Examples
use bit_set::BitSet;

let a   = 0b01101000;
let b   = 0b10100000;
let res = 0b11001000;

let mut a = BitSet::from_bytes(&[a]);
let b = BitSet::from_bytes(&[b]);
let res = BitSet::from_bytes(&[res]);

a.symmetric_difference_with(&b);
assert_eq!(a, res);

Returns the number of set bits in this set.

Returns whether there are no bits set in this set

Clears all bits in this set

Returns true if this set contains the specified integer.

Returns true if the set has no elements in common with other. This is equivalent to checking for an empty intersection.

Returns true if the set is a subset of another.

Returns true if the set is a superset of another.

Adds a value to the set. Returns true if the value was not already present in the set.

Removes a value from the set. Returns true if the value was present in the set.

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Returns the “default value” for a type. Read more

Extends a collection with the contents of an iterator. Read more

🔬 This is a nightly-only experimental API. (extend_one)

Extends a collection with exactly one element.

🔬 This is a nightly-only experimental API. (extend_one)

Reserves capacity in a collection for the given number of additional elements. Read more

Creates a value from an iterator. Read more

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.